Học Toán cùng BoxMath
Đăng ký
Tìm kiếm tùy chỉnh
Web
Kết quả 1 đến 3 của 3
  1. #1
    Ngày tham gia
    Sep 2014
    Đến từ
    hà tĩnh
    Ngày sinh
    11-19-1999
    Bài viết
    583
    Cám ơn (Đã nhận)
    885


    Giải hệ phương trình :

    $\left\{\begin{matrix} x^2+y^2=xy+x+y & \\ x^3-xy^2=9x-12& \end{matrix}\right.$

    Thư giản nào
    NHẬT THUỶ IDOL

  2. Cám ơn quỳnh như đã cám ơn bài viết này
  3. #2
    Moderator Lãng Tử Mưa Bụi's Avatar
    Ngày tham gia
    Aug 2014
    Đến từ
    Hà Nội
    Tuổi
    23
    Bài viết
    189
    Cám ơn (Đã nhận)
    163
    Trích dẫn Gửi bởi lequangnhat20 Xem bài viết
    Giải hệ phương trình :

    $\left\{\begin{matrix} x^2+y^2=xy+x+y & \\ x^3-xy^2=9x-12& \end{matrix}\right.$

    Thư giản nào

    Đặt $x=u-1$ và$ y=v-2 $
    Thay vào pt1 $u^2+v^2=uv$

    Đánh giá nhỏ$ 9x-12 $ là 2 lực lượng khá cân sức về mặt hệ số thử $x=1 \Rightarrow y=2 $là nghiệm
    \Leftrightarrow $u^2+v^2-uv=0 u=v=0$ là nghiệm của pt u và v khác 0 dễ thấy pt vn

  4. Cám ơn lequangnhat20, zmf994 đã cám ơn bài viết này
  5. #3
    Super Moderator lequangnhat20's Avatar
    Ngày tham gia
    Sep 2014
    Đến từ
    hà tĩnh
    Ngày sinh
    11-19-1999
    Bài viết
    583
    Cám ơn (Đã nhận)
    885
    Trích dẫn Gửi bởi Lãng Tử Mưa Bụi Xem bài viết
    Đặt $x=u-1$ và$ y=v-2 $
    Thay vào pt1 $u^2+v^2=uv$

    Đánh giá nhỏ$ 9x-12 $ là 2 lực lượng khá cân sức về mặt hệ số thử $x=1 \Rightarrow y=2 $là nghiệm
    \Leftrightarrow $u^2+v^2-uv=0 u=v=0$ là nghiệm của pt u và v khác 0 dễ thấy pt vn
    A có thể gợi ý cho e sao mà anh đặt được như vậy không !!
    NHẬT THUỶ IDOL

  6. Cám ơn zmf994 đã cám ơn bài viết này
 

 

Thông tin về chủ đề này

Users Browsing this Thread

Có 1 người đang xem chủ đề. (0 thành viên và 1 khách)

Tag của Chủ đề này