Bài toán:

Cho dãy số $\left\{ {{u_n}} \right\}$ và $\left\{ {{v_n}} \right\}$ được xác định như sau:$\left\{ \begin{array}{l}
{u_1} = 3,{\rm{ }}{v_1} = 2\\
{u_{n + 1}} = u_n^2 + 2v_n^2\\
{v_{n + 1}} = 2{u_n}{v_n}
\end{array} \right.{\rm{ }}$, $\forall n \in {\rm{ N}}$.
Tìm các giới hạn sau: $\mathop {\lim }\limits_{n \to \infty } \sqrt[{{2^n}}]{{{v_n}}}$ và $\mathop {\lim }\limits_{n \to \infty } \sqrt[{{2^n}}]{{{u_1}.{u_2}...{u_n}}}$.