Học Toán cùng BoxMath
Đăng ký
Tìm kiếm tùy chỉnh
Web
Kết quả 1 đến 3 của 3
  1. #1
    Ngày tham gia
    Aug 2014
    Đến từ
    Chốn ăn bám mẹ
    Tuổi
    19
    Bài viết
    406
    Cám ơn (Đã nhận)
    262


    Cho $x,y$ là các số thực chứng minh :
    \[3({x^2} - x + 1)({y^2} - y + 1) \ge 2({x^2}{y^2} - xy + 1)\]
    \[{E^{{V^{{E^{{R^{{Y^{{T^{{H^{{I^{{N^{{G_{{I_{{S_{{A _{{W_{{E_{{S_{{O_{{M_E}!}}!}}!}}!}}!}}!}}!}}!}}!}} !}}!}}!}}!}}!}}!}}!}}!}}{!_{{E_{{V_{{E_{{R_Y}_{{T_ {{H_{{I_{{N_{{G^{{I^{{S^{{A^{{W^{{E^{{S^{{O^{{M^E} !}}!}}!}}!}}!}}!}}!}}!}}!}}!}}!}}!}}!}!}}!}}!}}!}} !\]

  2. #2
    Thành Viên Chính Thức Nguyễn Kiên's Avatar
    Ngày tham gia
    Sep 2014
    Tuổi
    20
    Bài viết
    21
    Cám ơn (Đã nhận)
    39
    Trích dẫn Gửi bởi Trần Duy Tân Xem bài viết
    Cho $x,y$ là các số thực chứng minh :
    \[3({x^2} - x + 1)({y^2} - y + 1) \ge 2({x^2}{y^2} - xy + 1)\]
    Biến đổi trâu bò ta có :

    $$ 3 \left( x^2-x+1 \right) \left( y^2-y+1 \right) -2 \left( x^2y^2 -xy+1 \right) = \\
    \left( y^2-3y+3 \right) \left[ \left( x+\frac{5y-3y^2-3}{2y^2-6y+6} \right)^2 +\frac{3 \left( y^2-3y+1 \right)^2}{ 4 \left( y^2-3y+3 \right)^2} \right] \ge 0 $$

  3. Cám ơn cuong18041998 đã cám ơn bài viết này
  4. #3
    $\mathfrak{Love_Smod_Boxm ath}$ Trần Duy Tân's Avatar
    Ngày tham gia
    Aug 2014
    Đến từ
    Chốn ăn bám mẹ
    Tuổi
    19
    Bài viết
    406
    Cám ơn (Đã nhận)
    262
    Chuẩn rồi nhưng mà không biết có cách nào gọn hơn ko nhỉ đối với 1 đề hsg thì họ ko ra thế này đâu
    \[{E^{{V^{{E^{{R^{{Y^{{T^{{H^{{I^{{N^{{G_{{I_{{S_{{A _{{W_{{E_{{S_{{O_{{M_E}!}}!}}!}}!}}!}}!}}!}}!}}!}} !}}!}}!}}!}}!}}!}}!}}!}}{!_{{E_{{V_{{E_{{R_Y}_{{T_ {{H_{{I_{{N_{{G^{{I^{{S^{{A^{{W^{{E^{{S^{{O^{{M^E} !}}!}}!}}!}}!}}!}}!}}!}}!}}!}}!}}!}}!}!}}!}}!}}!}} !\]

 

 

Thông tin về chủ đề này

Users Browsing this Thread

Có 1 người đang xem chủ đề. (0 thành viên và 1 khách)

Tag của Chủ đề này