Học Toán cùng BoxMath
Đăng ký
Tìm kiếm tùy chỉnh
Web
Kết quả 1 đến 1 của 1
  1. #1
    Ngày tham gia
    Aug 2014
    Tuổi
    18
    Bài viết
    119
    Cám ơn (Đã nhận)
    99


    KÌ THI CHỌN ĐỘI TUYỂN DỰ THI HỌC SINH GIỎI QUỐC GIA 12 THPT.
    Thời gian: 180P, môn: Toán.


    Câu 1: Giải hệ phương trình:
    $\left\{\begin{matrix} 3x^3+2x^2=y\\ 3y^3+2y^2=z\\ 3z^3+2z^2=x \end{matrix}\right.$



    Câu 2: Cho dãy số $(x_n)$ được xác định bởi:
    $x_1=\frac{1}{2}; x_{n+1}=\frac{2014+x_n}{2016-x_n}$ với mọi $n=1,2,...$.
    a. Chứng minh rằng dãy $(x_n)$ có giới hạn và tính giới hạn đó.
    b. Với mỗi số tự nhiên $n \ge 1,$ đặt $y_n=\frac{1}{2013n+2015} \sum_{k=1}^{n} \frac{1}{x_k-2014}.$ Tính $\lim y_n$




    Câu 3: Cho 2 đường tròn $(C_1)$ và $(C_2)$ tiếp xúc ngoài nhau tại $M$. Tiếp tuyến chung ngoài $AB$, ($A$ thuộc $(C_1)$, $B$ thuộc $(C_2)$). Trên tia $Mx$ là tiếp tuyến chung của 2 đường tròn ( $Mx$ không cắt $AB$) lấy điểm $C$ khác $M$. Gọi $E,F$ lần lượt là giao điểm thứ 2 của $CA$ với $(C_1)$, $CB$ với $(C_2)$. Chứng minh rằng tiếp tuyến của $(C_1)$ tại $E$, tiếp tuyến của $(C_2)$ tại $F$ và $Mx$ đồng quy.



    Câu 4: Cho số nguyên dương $n\ge 2.$ Chứng minh rằng $m=2n^2-1$ là số tự nhiên nhỏ nhất sao cho tồn tại $n$ số nguyên dương $a_1, a_2,...,a_n$ thỏa mãn đồng thời các điều kiện:
    i, $a_1<a_2<...<a_n=m$
    ii, Tất cả $n-1$ số $\frac{a_1^2+a_2^2}{2}, \frac{a_2^2+a_3^2}{2},...,\frac{a_{n-1}^2+a_n^2}{2}$ đều là các số chính phương.

    Bạn là khách nên chưa được phép xem hoặc tải tài liệu này
    [Bạn cần đăng nhập hoặc để xem nội dung]
    Ảnh đính kèm Ảnh đính kèm

  2. Cám ơn F7T7, Viet_1846, lequangnhat20 đã cám ơn bài viết này
 

 

Thông tin về chủ đề này

Users Browsing this Thread

Có 1 người đang xem chủ đề. (0 thành viên và 1 khách)

Tag của Chủ đề này